
UNUSUAL DISK OPTIMIZATION
TECHNIQUES
Andrew Kane
University of Waterloo - PhD Candidate – arkane@cs.uwaterloo.ca

October 28th 2009

1. MOTIVATION

 Disk I/O is a scarce resource and often a bottleneck

 Optimization Types:
  Disk Efficiency (Usage Rate)
  Low Latency Writes (Logging) or Reads (Cache)
  Workload Smoothing (prefetching, speculative

execution) 2

http://blogs.msdn.com/e7/archive/2009/01/25/disk-defragmentation-background-and-engineering-the-windows-7-
improvements.aspx

OUTLINE OF TALK

  1. Motivation
  2. History
  3. Modern I/O Stack

  File Systems: Traditional, Journaling, Log-structured

  4. Common Optimization Techniques
  5. Unusual Optimization Techniques

  5.2 Freeblock scheduling
  5.3 Eager writing
  5.4 Low Latency Write-Ahead Log
  5.5 Virtual logs
  5.6 Dual-actuator disks
  5.7 Track-based logging

  6. Conclusions

3

2. HISTORY
2.1 MAGNETIC DRUM MEMORY

Widely used in the 1950s & 60s as the main working memory.

Above left: A 16-inch-long drum from the IBM 650 computer, with
40 tracks, 1 head per track, 10 kB of storage space, and 12,500 RPM.

4

2. HISTORY
2.1 MAGNETIC DRUM MEMORY

 Acting as main memory means CPU is waiting
for reads => we need low latency
  Stride operations on the drum so that the next

operation is under the read head when the CPU
needs it

  Fixed heads so no seek time

 This is memory, but random access is not a fixed
cost

5

2. HISTORY
2.2 HARD DISK DRIVES

The first hard disk drive was the IBM Model 350 Disk File in 1956.
It had 50 24-inch discs with a total storage capacity of 5 MB. 6

2. HISTORY
2.2 HARD DISK DRIVES

 Movable heads
  Seek and rotational latency
  So, don’t use this for main memory
  Read by block and cache results in memory so the

disk is not part of the CPU execution cycle
  Much larger storage sizes

 Combine Drum and Hard Disk…

7

2. HISTORY
2.3 COMBINE FIXED & MOVABLE HEADS

 Fixed and moving heads within hard disk
  IBM/VS 1.3 writes to Write Ahead Data Set (WADS)

(1982).
  One forced write to each track of the fixed head portion,

means write where head is currently located
  In parallel, block writes of all data to the movable head

portion
  Reads handled by disk cache and movable head portion

[1] Strickland, J. P., Uhrowczik, P. P., Watts, V. L. IMS/VS: An evolving system. IBM System Journal, 21, 4
(1982).
[2] Peterson, R. J., Strickland, J. P. Log write-ahead protocols and IMS/VS logging. In Proceedings 2nd ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems (Atlanta, Ga., March 1983).
[3] US Patent 4507751 - Method and apparatus for logging journal data using a log write ahead data set. 1985.

8

3. MODERN I/O STACK

Disk Drive

OS / File System

Application Cache

Cache

Cache Embedded Controller

Physical Media

FS API

Read/Write LBA

R
ead/

W
rite

F
lu

sh

W
rite-

th
rou

gh

[4] Farley, M. Storage Networking Fundamentals: An Introduction to Storage Devices, Subsystems,
Applications, Management, and Filing Systems. Chapter 4. Cisco Press, 2004.

9

3. MODERN I/O STACK
3.1 DISK DRIVE

10

3. MODERN I/O STACK
3.1 DISK DRIVE
  Access physical media via (Cylinder, Track, Sector) = CTS

  Remap damaged sectors

  Costs: seek (2-6 ms, minimum 0.6 ms), rotational (4-8 ms),
head switch, transfer latencies + queuing delay
  Seek cost varies non-linearly

  Cache for reading and writing
  Up to 30 second delay before write to cache is executed on the

physical media
  Reorder operations to reduce latencies

  Zoned-bit recording varies density on tracks
  Fastest throughput for outermost tracks

  Partitions are assigned from outermost track inwards

[4] Farley, M. Storage Networking Fundamentals: An Introduction to Storage Devices, Subsystems,
Applications, Management, and Filing Systems. Chapter 4. Cisco Press, 2004.

11

3. MODERN I/O STACK
3.2 FILE SYSTEM INTERFACE

 The file system keeps track of files organized into
a directory structure
  Traditionally for one disk partition
  Metadata (file structure, data location and other

information) + data (what’s in the file)

 Deals with the disk drive via Logical Block
Addressing (LBA), a single flat address space of
blocks
  This makes optimizations harder at this level
  Allows the disk to do its own optimizations
  Allows the disk to be more reliable via remapping

[4] Farley, M. Storage Networking Fundamentals: An Introduction to Storage Devices, Subsystems,
Applications, Management, and Filing Systems. Chapter 4. Cisco Press, 2004.

12

3. MODERN I/O STACK
3.3 TRADITIONAL FILE SYSTEMS

  Idea: Store metadata in tree of directory nodes and
inodes where leaves are blocks of data for the files

  Try to sequentially allocate blocks to a file so that reading
is faster

  Writes to existing blocks of a file are executed to that exact
location on disk

  Delayed writes can cause corruption on failure

  Example: ext2

[5] McKusick, M. K., Joy, W. N., Leffler, S. J., Fabry, R. S. A fast file system for UNIX. ACM Transactions on
Computer Systems (TOCS), v.2 n.3, p.181-197, Aug. 1984.

13

3. MODERN I/O STACK
3.3 TRADITIONAL FILE SYSTEMS

http://www.zimbio.com/Linux/articles/738/Part+II+Object+File+Systems+Legacy+Unix+Linux

14

3. MODERN I/O STACK
3.4 JOURNALING FILE SYSTEMS

  Idea: Add a journal (log) of changes that you are going
to make to the files system before you make them

  Better recovery and fault tolerance

  Reads use the normal file system

  Writes happen twice (journal + normal file system), but the
journal is sequential and batched for group commit
  Could journal only the metadata (common) which is small

  Example: ext3

[6] Tweedie, S. C. Journaling the Linux ext2fs File System. In the Fourth Annual Linux Expo, Durham, North
Carolina, May 1998.

15

3. MODERN I/O STACK
3.4 JOURNALING FILE SYSTEMS

http://www.ibm.com/developerworks/linux/library/l-journaling-filesystems/

16

3. MODERN I/O STACK
3.5 LOG-STRUCTURED FILE SYSTEMS

  Idea: Treat the entire disk as one log and put
writes to files at the end of the log

  Need cleanup and compaction to allow the log to loop
around

  Fast writes because of batching and group commit to
end of log

  Fragmentation of file on read (cache may solve this)

[7] Rosenblum, M. and Ousterhout, J. K. The design and implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10, 1 (1992), 26-52.

17

3. MODERN I/O STACK
3.5 LOG-STRUCTURED FILE SYSTEMS

Normal File System Log-Structured File System

http://www.outflux.net/projects/lfs/what_lfs_is.html

18

4. COMMON OPTIMIZATION TECHNIQUES
  Caching reads

  Removes or postpones lots of issues with fragmentation
  Do different levels of cache work well together?

  Reorder operations
  Prefetching
  Replicas of data (even on a single disk)

  Buffering/batching writes
  Potential data loss on failure
  If writes are transactional, then you’re trading latency for throughput

  Short-stroking disk
  Use only the outer tracks of the disk to reduce seek time
  Align with zoned-bit recording increases throughput
  Usually implemented using partitions

  Use non-volatile memory (most common is flash)
  Solid state drives (SSD)
  Hybrid drives = flash + hard disk

  Use multiple disks
  NAS/SAN/RAID includes extra cache memory

[8] Hsu, W. and Smith, A. J. The performance impact of I/O optimizations and disk improvements. IBM Journal
of Research and Development, March 2004, Volume 48, Issue 2, 255-289.

19

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.1 MODELING THE DISK IN SOFTWARE

  Need to know how the disk is laid out
  Go from LBA to CTS addressing
  Include remapping of sectors

  Need to know where the disk head is located
  Can be done in software
  When return from new read/write you know where the

head is (+ processing time)
  Keep this accurate by issuing new reads/writes as needed

  Model scheduling algorithm
  Predict order of execution of operations sent to the disk

20

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.2 FREEBLOCK SCHEDULING
  Idea: Replace a disk drive’s rotational latency delays

with useful background media transfers

[9] Lumb, C. R., Schindler, J., Ganger, G. R., Nagle, D. F. and Riedel, E. Towards higher disk head utilization:
extracting free bandwidth from busy disk drives. In Anonymous OSDI'00: Proceedings of the 4th Conference on
Operating System Design & Implementation. (San Diego, California), 87-102. 2000.
[10] Lumb, C. R., Schindler, J., Ganger, G. R. Freeblock Scheduling Outside of Disk Firmware. In Proceedings of
the First USENIX Conferenceon on File and Storage Technologies (FAST’02), Monterey, CA, January 2002.

21

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.2 FREEBLOCK SCHEDULING

  Applications
  Segment cleaning (e.g. LFS)
  Data mining (e.g. indexing for search)

  In firmware (OSDI 2000)
  20-50% of disk’s bandwidth can be provided to background

applications
  47 full disk scans per day on an active 9 GB disk (last 5%

takes 30% of the time)

  In software (FAST 2002)
  15% of disks potential bandwidth can be provided to

background applications
  37 full disk scans per day on active 9 GB disk 22

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.3 EAGER WRITING

  Idea: Execute writes in free sectors near the disk
head to reduce write latency
  Usually used for transactional writes

  Issues
  How to ensure there are free sectors near the head
  Fragmentation for reads (cache may hide this)

  Linking fragments together
  Defragmentation method

  Garbage collection of sectors
  Wasted portions of disk (how much?)
  Recovery from system failure 23

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.4 LOW LATENCY WRITE-AHEAD LOG

  Idea: Write log entries using eager writing and
reconstruct their order using a log sequence
number (LSN)

  Write in a cylinder until you reach a usage threshold,
then move to the next cylinder to guarantee free
sectors near disk heads

  Scan used cylinders on recovery

  Use for logging disk of transactional system

[11] Hagmann, R. Low Latency Logging. Technical Report CSL-91-1, Xerox Corporation, Palo Alto, CA, February
1991.

24

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.5 VIRTUAL LOGS

  Idea: Use eager writing to extend performance of LFS

  Use back chaining to connect portions of the log
  Extend to a tree to allow skipping obsolete entries

  Compact free space using disk idle bandwidth
  Copy chunks from one track to holes in another
  A new empty track is the end result

[12] Wang, R. Y., Anderson, T. E., Patterson, D. A. Virtual log based file systems for a programmable disk. In
Proceedings of the Symposium on Operating Systems Design and Implementation, 1999, pp. 29–43.

25

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.6 DUAL ACTUATOR DISKS
  Use a log-structure file system
  Reads and writes on a single actuator

disk force lots of seeks
  Use one actuator for writing to the end of

the log, use the other for reads

  Benefits:
  Approximately 0 seeks per write
  Reads and writes do not cause lots of seeks
  Heads can be smaller and simpler if they

do only one function
  Combine with eager writing to reduce

rotational latency

  Issues:
  Costs of disk
  Can’t move two actuators at once

[13] Chandy, J. A. Dual actuator logging disk architecture and modeling. Journal of System Architecture, 53, 12
(2007), 913-926.

26

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.6 DUAL ACTUATOR DISKS
  There are many patents for multiple actuator disks

27

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.7 TRACK-BASED LOGGING
  Idea: Use one small disk which executes log

writes one per track for low latency writes,
combined with a normal disk for reads.

[14] Chiueh, T. C. Trail: A track-based logging disk architecture for zero-overhead writes. In Proceedings of the
International Conference on Computer Design, 1993, pp. 339–343.
[15] Chiueh, T. C. Huang L. Track-based disk logging. In Proceedings of the International Conference on
Dependable Systems and Networks, 2002, pp. 429–438.

28

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.7 TRACK-BASED LOGGING

 Similar to IMS/VS 1.3 WADS setup, but using a
non-fixed head disk for logging.
  Free sectors are always under disk head so no

waiting to write

 Transaction processing workload (ICCD 1993)
  Write latency >10x improvement
  Read latency better in all cases

 TPC-C (DSN 2002)
  Throughput is 62.7% higher
  DB logging related disk I/O overhead is reduced by

42% 29

5. UNUSUAL OPTIMIZATION TECHNIQUES
5.8 RESTRICT LOCATIONS TO WRITE

  Idea: Append write data to one of X files based on
which is closest to the disk head.
  X is a tunable setting

  Efficient use of disk space because only X files and
each is compact

  Recovery is fast, because you only need to read X files

I submitted something like this to FAST 2010, though without a good background in the area.

30

6. CONCLUSIONS / TAKE AWAY POINTS

 Freeblock scheduling can do useful background
work on an active disk without affecting
foreground processes.

 Eager writing can be very valuable, but
maintaining good performance can be tricky
  Why are these systems not used in practice?

31

REFERENCES
History:

[1] Strickland, J. P., Uhrowczik, P. P., Watts, V. L. IMS/VS: An evolving system. IBM System Journal, 21, 4 (1982).
[2] Peterson, R. J., Strickland, J. P. Log write-ahead protocols and IMS/VS logging. In Proceedings 2nd ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems (Atlanta, Ga., March 1983).
[3] US Patent 4507751 - Method and apparatus for logging journal data using a log write ahead data set. 1985.

Modern IO Stack:
[4] Farley, M. Storage Networking Fundamentals: An Introduction to Storage Devices, Subsystems, Applications, Management,

and Filing Systems. Chapter 4. Cisco Press, 2004.

File Systems:
[5] McKusick, M. K., Joy, W. N., Leffler, S. J., Fabry, R. S. A fast file system for UNIX. ACM Transactions on Computer Systems

(TOCS), v.2 n.3, p.181-197, Aug. 1984.
[6] Tweedie, S. C. Journaling the Linux ext2fs File System. In the Fourth Annual Linux Expo, Durham, North Carolina, May

1998.
[7] Rosenblum, M. and Ousterhout, J. K. The design and implementation of a log-structured file system. ACM Transactions on

Computer Systems, 10, 1 (1992), 26-52.

Normal Disk Optimizations:
[8] Hsu, W. and Smith, A. J. The performance impact of I/O optimizations and disk improvements. IBM Journal of Research and

Development, March 2004, Volume 48, Issue 2, 255-289.

Freeblock Scheduling:
[9] Lumb, C. R., Schindler, J., Ganger, G. R., Nagle, D. F. and Riedel, E. Towards higher disk head utilization: extracting free

bandwidth from busy disk drives. In Anonymous OSDI'00: Proceedings of the 4th Conference on Operating System Design &
Implementation. (San Diego, California). USENIX Association, Berkeley, CA, USA, 87-102. 2000.

[10] Lumb, C. R., Schindler, J., Ganger, G. R. Freeblock Scheduling Outside of Disk Firmware. In Proceedings of the First
USENIX Conferenceon on File and Storage Technologies (FAST’02), Monterey, CA, January 2002.

Low Latency Write-Ahead Log:
[11] Hagmann, R. Low Latency Logging. Technical Report CSL-91-1, Xerox Corporation, Palo Alto, CA, February 1991.

Virtual Logging:
[12] Wang, R. Y., Anderson, T. E., Patterson, D. A. Virtual log based file systems for a programmable disk. In Proceedings of the

Symposium on Operating Systems Design and Implementation, 1999, pp. 29–43.

Dual Actuator Disks:
[13] Chandy, J. A. Dual actuator logging disk architecture and modeling. Journal of System Architecture, 53, 12 (2007), 913-926.

Track-based Logging:
[14] Chiueh, T. C. Trail: A track-based logging disk architecture for zero-overhead writes. In Proceedings of the International

Conference on Computer Design, 1993, pp. 339–343.
[15] Chiueh, T. C. Huang L. Track-based disk logging. In Proceedings of the International Conference on Dependable Systems

and Networks, 2002, pp. 429–438.

32

QUESTIONS?

33

